Section 4 Cross-disease comparisons
4.1 Do comparison
# read cross-disease prioritisation matrix
<- file.path(RData.location, "crossdisease_matrix.txt")
data.file <- read_delim(data.file, delim='\t') %>% column_to_rownames('target')
data
# analysed using the self-organising learning algorithm
<- data %>% sPipeline(scaling=1)
sMap
# the resulting map partitioned into gene clusters
<- sMap %>% sDmatCluster()
sBase
# write into a file 'crossdisease_suprahex.txt'
sWriteData(sMap, data, sBase, keep.data=T) %>% transmute(Target=ID, Index=str_c('H',Hexagon_index), Cluster=str_c('C',Cluster_base), KSD,AS,PSO,UC,CRO,RA,MS,SLE,T1D) %>% write_delim('crossdisease_suprahex.txt', delim='\t')
4.2 Clustered genes
Clustered genes identified above (crossdisease_suprahex.txt
) can be explored: